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GENERAL VARIATIONAL METHODS FOR
WAVES IN ELASTIC COMPOSITES1

by

S. Nemat-Nasser
2

ABSTRACT

General variational theorems in which the displacement, the

stress, and the strain in one case, and the displacement and the stress in

another case, are given independent variations, and which include appro-

priate general boundary and discontinuity conditions, are developed with

a view toward the application to harmonic waves in elastic composites with

\periodic structures. The one-dimensional case is first developed in detail,

Snd in order to demonstrate the effectiveness of the results, especially

their accuracy in providing the dispersion curve, waves propagating normal

to layers ii a layered composite are discussed, and numerical results are

presented; see Tables I and II. Then the general three-dimensional case

is considered, and the results are applied to waves propagating normal to

the fibers in a fiber-reinforced composite.

This work was partly completed while the author was at the University of

California, San Diego, La Jolla, California, as a consultant to Grant
*-AFOSR 70-1957, sponsored by the ... . A

• United States Air Force, Washington, D. C.

' Professor, The Technological Institute, Northwestern University,
Evanston, Illinois.,



I. INTRODUCTION

Because of their dispersive and other desirable effects, composite

materials have become now an important ingredient in many aerospace

structures., The propagation of elastic waves in such materials has, there-

fore, been discussed by a number of writers using different theories. InI[, 2], for example, a two-term Taylor expansion of the displacement field

within each layer in a layered composite is considered together with a

certain smoothing process, to arrive at an approximate set of equations

which resemble those for a homogeneous continuum with microstructure.

Bedfoid and Stern [3), on the other hand, directly consider a mixture

theory to characterize the composite, and proceed to calculate the coupling

coefficients in the corresponding constitutive relations, by considering

simple static elasticity problems; these authors confine their analysis to a

special case where the interacting body forces are assumed to be propor-

tional to the relative displacement of the constituents. In a more recent

paper, Hegemier and Nayfeh [4] have used an asymptotic app.-oach and, for

waves propagating normal to the layers in a layered composite, have derived

systeiaatically mixture-type field equations directly, which, for the har-

monic wave, gives the exact dispersion relation, and which can be used

(as these authors do) to study the transient waves in such composites.,

For harmonic waves in a composite with a periodic structure, one

may employ a variational approach. This can particularly become a very

effective tool,. if one use, a variational statement ir, which not only the



displacement, but also the stress field is given independent variation.

Moreover, by permitting discontinuity in the displacement and the stress

test functions, one can expect a more accurate reproduction of the local

variation in the displacement and the stress fields within and across the

constituent materials. An example of such a calculation can be found in a

thesis by Wheeler [5] and in a recent article by Kohn, et al. [6], where

the classical theorem of stationary potential energy which leads to the

well-known Rayleigh quotient for the eigenfrequency, is used. Although

the authors in [61, incorporate jump conditions in their variational state.

ment by the addition of certain terms to the classical functional, they do

not use this modified form and hence it is not shown how effective it is.

Moreover, since the additional terrns inentioned above are arrived at by

trial and error, their physical significance is not immediately obvious.

In this paper we shall develop general variational statements for

harmonic waves in composites, in which the displacement, the stress, and

the strain in on'ý case, and the displacement and the stress in anot .er, are

given arbitrary variation. In addition we shall develop all the discontinuity

and the quasi- periodicity conditions in a straightforward and systematic

manner. Of course, we shall base our developments on variational theorems

iT which have teen explored by a number of investigators in the mechanics

literature, beginning with the work of Hellinger (1914) [7], the unpublished

thesis by Prange (1916) [8], coitributions by Reissner (1950-53) [9, 10],

works byHu (1954) [11], Washizu (1955) [12], and a large number of

other researchers; see the textbook by Washizu [13] for further



discussion; see also [141. In particular, regarding the jump conditions

we shall generalize the work by P-rager (1967) [15] to include the variation

of weighted iveraged tractions and displacements on a discontinuity

-0oundary. For compotites such a modification proves quite useful, since

the elastic constants of the two constituents may differ substantially fromn

each other. Finally, to demonstrate the effect.veness of our results we

discuss in some detail, elastic waves propagating normal to the layers in

a layered composite. Our numerical results are then compared with those

reported in [1, 5, 6] anid the exact solution, which comparison reveals the

superiority of the variational statements developed herein,* see Tables I

and II. In fact, accurate results as those presented here, have not been

obtained before by any of the methods mentioned above: except, cf course,

[4] where the exact dispersion relation is obtained. In addition, a second

example is worked out, which illustrates the significance of the proposed

variational statement that includes a weighted averaged tracticn on interior

discontinuity surfaces. Here, with a suitable choice cf the weighting

parameter, accurate results are obtained; see Table III.
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2. ONE-DIMENSIONAL CASE

In order to stress the essentials we begin by considering an

elastic medium whose properties vary periodically in the direction of the

propagation of elastic waves, i. e., the x-direction. Let a be the

periodicity- length. Then we have p (x + a) = p 'x), and 77 (x + a) = 77(x),

where p is the mass-density, and 77 stands for X + Zý when

dilatatio-il waves are considered, and for ýL when shear waves are

considered, X and R. being the Lame coefficients.

For harmonic waves with frequency w, all the field quantities are

proportional to e , where i 7 T and t measures time, and

therefore we have

H dx dx

where a is the stress, u the displacement, and C the strain.

For a periodic medium Eq. (2. 1) has periodic coefficients, and

according to the well-known Floquet theory, see for example L16], it

admits a solution with the property

iqa
g (x + a) g (x) e , (2.2)

where g stands for any of the dependent variables a, c or u, and q

is the overall wave number.

4



We wish to establish general variational statements which can be

employed together with some appropriate test functions which may )r may

not be coitinuous throughout a representative cell, in order to obtain

approximate solutions to system (2. 1). Since our objective is to apply

these variational statements to composite materials whose properties vary

substantially from one constituent to the next, we may wish to use different

test functions to represent, for example, the displacement in the region

occupied by each constituent material. Therefore, within a cell, the test

displacement function may suffer a finite discontinuity across the interface

between the two materials. Similar remarks apply to the stress field.

Hence a general variational method must account for such possible discon-

tinuitie s.

Let us choose the origin of the coordinate such that - a x x a

defines a complete cell. In this region let x = x be a point of discontin-

uity for a test function. If the materi?.l to th left is completely disconnected

from the material to the right of the discontinuity point, then, since we are

dealing with a one-dimensional problem, we may prescribe arbitrarily one

. +
boundary condition at x = x and one boundary condition at x = x , a

0 0
*

total of no more than two conditions; x = lim (x o a), a > 0.. Hence,
0 - 0

in general, one may prescribe arbitrarily jumps in the value of two field

quntities at x = x ; in the three-dimensional case this number increases0

to six.

In addition to the Jump conditions we must • "ount for the

5



quasi-periodicity condition (2. 2) which can be written as

a a iqa a 2 iqa
u () u(-) a(-) (.)

As we shall see below, these conditions can be accounted for by either

the use of a Lagrangian multiplier, or by simply calculating the work of

the tractions at the two boundary points of the cell.

General Variational Statement 17-151

The most general variational statement for real-valued field

quantities with discontinuities, in which the stress, the strain, and the

displacement fields are varied independently, may be stated as follows,

a/2

_-A - U )I {a (u)} (2.4)

a/2

-a/2 x = x

where f is •he bidy force, T is the prescribed value of traction at the

end points, A is the Lagrangian multiplier, and U is the prescribed

value of the displacernent at the end points; -t each end-point we can

, either prescribe the displacement or the stress. but not both., Additionally

in (2. 4) we have used the notacion

a = 0a1P4+ (I - •o )a(), (u) = - .(i) , (2.,5)

(2) + (I -s
where at poinc xo, g = g (xo ), and g (x 0 ), g standing for either

a or u;' in (2., 5), a is an arbitrary real constant, a we prameter.

6



whose significance will be discussed below. Taking the first variation of

(2. 4) we obtain

1 f[ -] 8C 6C C a EL + Pf 6u dx

a/2

+ 4 >a) 68 - (u) 68} (2.6)

X=X

whe re

u = (l-ce)u(=)+ (1) (2.7)

From (2. 6) we observe that the vanishing of the right-hand side for

arbitrary variation of strain, stress, and displacement in the region
a a

- - < x yields respectively, Hooke's law, the definition of strain,
2 2

and the momentum equation., From the second term on the right-hand side

of (2. 6), moreover, we obtain the stress boundary data or the displacement

boundary data, depending on whether the traction or the displacement is

prescribed at a boundary point; in the latter case the Lagrangian multiplier

A is the traction corresponding to the prescribed displacement. The last

term in the right-hand side of (2. 6) corresponds to the jump conditions at

the discontinuity point x = x . At this point one can prescribe arbitrarilyo

the variation of no more than two field quantities. To arrive at a more

general case we have implemented the weighting parameter 0i whose value

can be selected arbitrarily. Observe that, for arbitrary variation

I When two materials, )P, 0 * 1,2, meet at point x0 , the superscript is iden-

tified with the corresponding material; i.e., a is assigned to one of the
constituents. 7



of -a, the last term in (2. 6) guarantees the continuity of the

displacement field across the interface x - x, whereas, for arbitrar-
- 1

variation of u the stress is required to be continuous. For a = - the

last term in (2. 6) becomes

(6u + " - + " (U )_ . (.8)

2

Similarly, for a = 0 and a 1 we obtain, respectively,

(a) 6U (U) 6 a'( , (o) 6u()- (u) 6 () (2.9)

These equations indicate the fact that at a discontinuity point different

quantities can be assigned arbitrarily. Theoretically, these equations are

equivalent. In actual calculation, however, a proper choice for the value of

a may lead to rn.re acc-urate results; we shall exemplify this later on.

Application to Composites

Consider now a composite consisting of layered elastic media

bonded together, and let us consider harmonic waves propagating normal

to the layers., For simplicity assume that a cell in this composite consists

of two materials, MP, P3 = 1, 2, where M' occupies the region

•:a < b ad b x a M
-- --g and -s, and M2 occupies the region

2 2 2b x b
-b - ; see Fig, 1., The mass density and the elastic constantsof these

Note that a is a linear combination of Q(2) and a(1)as defined by 2?. 5).

However, it. is 6 that has independent variation, a•. not a (2) and
y(a) separately.
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materals will be denoted by p P and 1, = 1, 2, respectively,

where each constituent may be inhomogeneous in the direction of wave

propagation.

To specialize the fur'-tional (2. 4) to this case, we observe that

this functional must remain real- valued, although •_,, the present case the

field quantities are complex-valued. Identifying the body force f with

- 2 u, "-.,e write'

(a/?. o~
I =•17€* p2 uu*- _ a du*

i, J 2  2 --u-., + c.c.} dx
-a/2

" ( A~u* - u* -iqa

x=tb/2

(2. 10)

where the superscript star denotes the compiex conjugate, and the term

c. c. stands for the complex conjugate of the quantities which precede it.

The second term in the right-hand side of (2. 10) corresponds to

the constraint on the displacement at the end points imposed by the quasi-

periodiri ty c nditioon (2. 3) ; A is a Lagrangian multiplier.2 Instead of

using the displacement constraint, we may replace this term by a term

which corresponds to the work of the end tractions. The results, however,

will be the same, since twice this work is given by

Here we use the obvious fact that a complex-valued quantity plus its'
complex conjugate is equal to twice of its real part.

a
2 In the actual calculation, A must be set equal to a (-).

2
9



[ Ua(... ) +) c22

o (2) [u*(1) oia - u* + c.c. (2.11)

where (2. 3)2 is used. The comparison of the right-hand side of (2. 11)

with the second term in the right-hand side of (2. 10) reveals that A 2).

Taking the first variation of I. we now obtain

.a/Z .7C -a W - C -± - 6 a* -r a + p W _ U
61 = f5- {[nc, oJoc* [_ , _] ooo [,o +pw.aul .

S -a/2 I Xd

+ c.c. I dx

+ [o(j). ]u*( -) [a(Ae)- Ae- ]8u* (-a)

S-* u*( eiqaJ6 A* + C.C.

+ (a) 8u* - (u) 6-* + c.:c, , (2. 12)
x = •b/2

which for arbitrariness of the indicated variations, gives all the field

equations and the corresponding boundary and jump conditions.

The functional 11 may now be specialized to yield other functionals

which may be more suitable for calculation in a given context.: For

example, if we assume that Eqs. (2, 1)2, 3 are satisfied by the test

function for the displacement, I reduces to

10



= a/2 du dUA [ a) a e-iqa 1
du.$1 u* d u(~e-a/2 xPU

- {(, )U*} + C. C. (2..13)g 
x=+b/2

whose first variation is

61 a/2 d g]u(I .- ) + p u+ c.cj dx
a/2xdb/

+ Lu.i A] 6u* ~ Lu [ t (a e- iq u

- u~ (i) e a iqa] 6 A* + cc

dxý* 6 (u) 6(n=77 + x='/2 (2.14)

whe re

du 0 du)x dx '.1

where the superscript refe rs to the corresponding material, i. e.,

M• or M2.

Other special cases are obvious., For example, if the test function

is chosen such that the quasi- periodicity condition is automatically

satisfied, the second term in the right-hand side of (2. 13) drops out. If,

moreover, the test function is continuous throughout the cell, the last

11



term in the right-hand side of (2. 13) vanishes. In this very special case

we then arrive at the usual Rayleigh quotient which defines the frequency.

This is the case which was exemplified in detail in [5, 6). Observe that

the corresponding approximate expression for the stress field obtained in

this manner would suffer a discontinuity at the interface of the two constitu-

ent materials. The results are, therefore, very poor- see Table II. If,

on the other hand, different test functions are used to represent the displace-

ment field within the region occupied by each constituent material, the last

term in (2. 13) must be retained. This may then result in a more reasonable

approximate expression for both the displacement and the stress fields.

We therefore wish to stress here that, if one wishes to vary only the dis-

placement field, as is done in [5, 6], one then must use this latter approach,

rather than the usual Rayleigh quotient.

In most calculations it is much easier to use the same set of test

functions throughout the entire cell. To arrive at sufficiently accurate

results, another variational statement must be employed, in which both

the displacement and the stress fields can be directly and independently

approximated. In the following we shall discuss this case.

Another General Variational Statement [7-15)

Let us denote by D the inverse of the elasticity coefficient 77, i. e.,

D (2. 16)

The most general variational statement for real-valued field quantities

with discontinuities, in which the displacement and the stress fields

12



(but not thc strain field) are varied independently, may be stated as

follows; compare with Eq. (Z. 4):

_a/2 a/2ha/2 r-2DD. - pfu - oj ]dx + Tu, or A( u- U) (a2

-a/2 L- d a/2

X-X
0

where all the quantities are defined as before. The first variation of

(2. 17) is

_ya /Z d
6J ]a/2 •Do'-] + HEa + p Wu] u dX

a/2
c-[a T]6u, or [a- A]6u [u- U]6A} (2

(a +6uu]ud

field equations, and the boundary and juofp conditions,

Observe eoat if, cnntinuous d;splacement and stress test functions

are used in (2. 17), the last term drops out, Nevertheless, the corres-

ponding variational statement will yield reasonable approximate expressions

for the displacerr.ent and the stress fields.

To apply (2. 17) to elastic waves in composites, we proceed as

before, ani consider the func'cnal

t13



1 a/Z 1 uu du* r } dx

aI Z 2 dxS•a/2

+ {~ u*•) u*( l) ~iq ] + •(u*]:} +c.c.

+{A[u*(2) -u*(-.2)ei a] + C.C./
x=+b/2

(2. 19)

whose first variation is

a/2 dx

- [-A]6u* (a) e-[o(-)- Ai-a] 6u*(•--2)

[u (j)-u (-2)eiqa 6A* + c..c..}

{ () 6U* - (U) 6c* + c.c. } c, . 20
x=*512

It is clear that the vanishing of 6 J1 for arbitrary variation of the indicated

quantities, guarantees the satisfaction of the field equations, the quasi-

periodicity conditions, and the continuity of the displacement and the stress

across the interface of two materials within the cell.

Let us now consider numerical examples before discussing the

general three-dimensional case..

Illustrative Examples

I. As our first example let us illustrate the effectiveness of our

variational theorem corresponding to functional (2. 19). We assume that

14



each constitue•it in the composite is homogeneous and isotropic.

As our test functions let us consider

u i(Q+ Z2 n) ' = ei(Q+ Zw n) (U- U e or S e (2.21l)
n n

tL=O n=0

where Q = qa, • = -,and U and S are the Fourier coefficientsa n n

which are to be calculated; (2. 21) is the test function used in £5, 6].1

Since the above test functions are continuous throughout the cell,

and moreover satisfy the quasi-periodicity conditions, only the integral

in (2.19) survives. Substituting from (2. 21) into this integral and carrying

out the indicated integrations, we arrive at

b+ N ApW *sin iT(n - m)-a

3x (N) = [ApZUnU1  + ADSn sin wr(n - m)
n, m=O

n~m

+ , L~Un +DS S +-(Q +Zrn) (S U - SU),(.2
r1=0 n n a n n n n '

where the following notation is employed:

Ap =P P1  ' AD= D D ,

" n = In + n 2 D Dx n, + n2 D 2 (2.23)

a-b b
n= , n a1 a 2 a

To begin with we inmnediately observe that, for N 0, (2. 22)

yields

15



o21" 2 ni n

W, PD_/ -2 , (2.24)

which corresponds to the non-dispersive results that can be obtained by

the usual method of calculating the effective mass-density and elastic

modulus.

For N k 1, we introduce the notation

U = UN, UN+l , U0 UN1T

(2. 25)

S {SN S SO SNIT

where superposed T denotes the transpose, and write (2.22) as

u* T - H- U
J (N) L-i-- :} (s.r26)

where
bb-

sin -- snZ-

-a 2p ap I Zn

b b
sin ir- sin 7 b-

a aP r AP I P Zt

b b
sin Zr- s in r-

Ap a ap a

a a

d ia IQ - -rN Q + r (. n+ 1), Q, . Q + 7.N• (2..2•7)

16
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and wlere the matrix * is obtained by replacing w2 p in the matrix

0 by D, and CC2 Ap by AD, respectively. From che stationary con-

dition imposed on (2. 26) we now immediate arr;v(L at

SU + HS = 0 , H* U + 41S -: 0

which yield

S -H n U- H 4 H" 1 ' U =0 (2.28)

The second equation in (2. 28) provides the eigenfrequencies and the

corresponding eigenvectors, and the firr. equation then gives the Fourier

coefficients for the stress field. The characteristic equation therefore is

det H*- *H'- 1- 0 . (2.29)

For a given value of the wave number Q, the roots of this equation give

the corresponding frequencies.

Table I gives typical results witL the corresponding exact values for

I Pa 77 2
n- 1 - = 3, and the indicated values of - In this table the

2 2' P1 r/1

values of the dimensionless frequency,

aw ( a P/77 . = ni 1, + n, 7 , (2.30)

are listed for the indicated values of Q and N, an- for various eigen-

modes. As is seenx from this table, our crudest approximation which

still manifests dispersion and which corresponds to N = (i. e. , 3 plane

waves), gives for the first mode, results which are extremely accurate.

17
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For higher modes N must be taken greater than 1, although even for

N = 1, the secowi and third modes obtained from (2. 29) are still quite

accurate; we shall discuss this below. As is seen from Table I, for

N 2 2, again extremely accurate results are obtained. Indeed, to our

knowledge, no othei- approximate method has as yet produced such superior

results with so little computational effort.

To demonstrate this last assertion, we have compared some of

our results with those corresponding to the methods reported in [II and

in [5, 6], in Table Ila. Observe that, even for N = 5, (i.e., 11 plane

waves), the method of Kohn, et al. [6] gives poorer results than those

deduced from Eq. (2. 29) for N = 1, (i. e., only 3 plane wavesj, while for

a fixed N, Eq. (2. 29) requires less computational effort than the corres-

ponding equation in [6); this is besause, in Eq. (2. 29) matrix H is

diagonal, ,,'hereas in [6] the characteristic equation has the form

det IA - V2 BI B 0, in which neither A nor B is diagonal.

In Table IIb the values of the frequency parameter V for higher

modes, as given by Eq. (2. 29), are compared with those obtained in £6].

We note that for N = 2, for example, the characteristic Eq. (2. 29)

is a 5 x 5 determinant which can yield only the first five eigen-

frequencies. As a rule, only the first eigenfrequency is reasonably

accurate. A very remaekable feature of the present method, howrver, is

that, even the higher frequencies obtained in this manner, are quite

accurate, whereas this is not the case or the method proposed by Kohn,

et al. [6]. Table HIc illustrates this fact. In this table all eigenfrequencies

18



are reported for N = 2.

IL. For our second example we shall illustrate the variational state-

ment (2. 13) and especially the significance of the weighting parameter ot.

Again we consider waves propagating normal to the layers in a layered

medium. Here we shall use a different displacement field in each con-

stituent, and set

+ N i(Q+ 2wn)a
= E U e a a b5 - -

n=O n 2 2

and a
2 2

_W i i2rm-X
(2) b bbu = V v e S , b x S b (2.31)

m=O m 2 2

Whil' u(2) satisfies the quasi- periodicity condition, u(2) does not, and

therefore (2. 31) represents a crude approximation. Nevertheless, if the

weighting parameter ot is chosen appropriately, reasonable results can

be obtained. We shall not report the detailed algebra here, and only give

the final equation:

~(Q+ 2wm) (Q+ Z2n) + -Z + 1- ( 2 nM - n) U*n
Y 7rirm (m)-]n) a n

n~m

+: N]+2U*U +2 -2rn)Y V Vn

b b

n=O nn Ln -a

+ 2 F + (1-a) (Q+ 2. sin (n-m L-Q V +U V
a ma] [Urn a n m n

n~m=0 12M
(2. 32)

19



where y=17,//'1,0 = P/P 1  = n + y , and 0 n + On

Table MIa gives the frequency parameter V fore =3, n, n = -

N = 5, and indicated values of Q and a. As is seen, 0t can have a

significant effect on the accuracy of the result. It should be remarked

that, in view of the discontinuity conditions which are involved now, the

algebra is more cumbersome than in the previous example. Another point

1
that should be stressed is that a = - is not necessarily a good choice for

2I

this parameter, as is seen from Table III; for t = -• our general

variational statement (2. 13) reduces to the case considered in [6]. The

optimum value of at occurs at a = 2, and it appears that this optimum

a is independent of the value of y 11 /17 , for fixed values of

and 0, and for N - 5. Further calculation revealed that for sufficiently

larle N, say, N a 3, the optimum value of a is always 2, independently of

the values of the other parameters. For small N, say, N 9 2, on the other

hand, optimum a chreiges with the other parameters. This is exemplified in

Fig. 2, where ti,- variation of v is plotted against a for indicated values

of the other parameters. Note that for N - 0, the optimum value of o is 1.0,

whereas for N - 2, the optimsm value is 2.1. It is remarkable that even for

N - 0 (i.e., u U 0 eiQc and u os) at - 1.0 gives v = 0.280 as com-

pared with the exact value v * 0.271. For N - 2 and a = 2.1, on the other

hand, v - 0.274.
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3. THREL- DIMENSIONAL CASE

We shall first develop the relevant general variational statements

and then specialize the results for application to harmonic waves in

composites with periodic structure. As before, we shall be excluqively

concerned with the linear elasticity theory.

Using a rectangular Cartesian coordinate system we denote the dis-

placement, the strain, and the stress components by u , and akj' jk j

respectively, and assume that the body forces f. measured per unit mass
3

are given throughout the volume V occupied by an elastic body with mass-

density p and elasticity coefficients Cjktm (x), where x is the position

vector of a typical point in V; j, k, t, m= 1, 2, 3. In the general anisotropic

case Cjkm is symmetric with respect to the exchange of j ane k,

t, and m, and jk and Lm. For the isotropic case, moreover, we have

Cjktm =kjk 6 m + 24 6j 56 rn, where X and ý± are the Lame coeffic-

ients (they inay depend on x), and 6. is the Kronecker delta; we need

not confine our discussion to the special isotropic case.

The field equations are:

r +Pf.O 0 a. C Cjk, k + p jknm ,m
(3. 1)

u (U + j
jk =u(j, k) (j, k) - 2  ik Uk,

where a cornma followed by an indlex letter indicates differentiaLlon with

respect to the corresponding coordinate variable, and repeated subscripts

2.



are to be surnmed from 1 tr 3.

Tv characterize tle boundary '-ta w;_ zleno*e by n. the exterior
3

unit .ormal an the regular surface D whic', bounds the body, and assume

that at a typical point on S certain components of the displacement vector,

together with the complementary components of the tractio,' vector, are

prescribed. We denote by T. the prescribed traction components,

2 and by U1 the prescribeJ displacement components;

henceiorth, singly and doubly underlined subsc-'pt letters refer, respec-

tively, to the prescribed tractir ind displacement components at a point

on S. We thus have

a.kn. =T , u =U. , on S (3.2)

In our general variationa1 statements we shall admit test functions

which may have finite discontinuities across a finite number of isolated

surfaces within the volume V. We shall denote the collection of these dis-

continuity surfaces by •, and obaerve that, at a point on 2, three boundary

data can be prescribed f'ir the material on one side of the surface, and

three boundary data for the material on the -'.her side, a total of no more

than six conditions. Hence, a jump in the value of at most six quantities

may be prescribed arbitrarily at a point on

With the above preliminaries out of the way we now consider a

variational statement in which the displacement, t1.i strain, and the stress

can be given arbit ary variation, as follows., Consider the functional
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K =s{Cjktm (jk C m - pfi u -Y~ -E U(i k)]}d

T. u. dS - T U. - U. dS - T. (u.) d
s is E- (3.3)

where

"T. = T)(-u u. - u(', on . (3.4)
J J

Here the superscripts are defined in the following manner: The discontin-

uity surface E divides the body into subregions with at least a part of

Sas a common surface. Consider two such adjacent subregions, say,

regions 1 and 2, and the field quantity g., At a typical point on E, the

quantity g( 1, 2, then denotes the limiting value of g as the con-

sidered point is approached from the interior of subregion1 P.

In Eq. (3.4)11 ot = ci(x) is a real-valued function defined on E; this

function can be chosen arbitrarily to expedite the numeric-a calculation in

the given context. [For composites, a is assigned to one of the constituents..

If we now observe that the exterior unit normal to, say, subregion 1,

is the negative of the exterior unit normal to subregion 2 at a typical point

on E, the first variation of (3.3) becomes

OK= J ~L Cjk-m '.t- CTjk1 IE k - I k- u(j, k)] 8a jk

- ['~k + f~]u~}dV

+sI[orknk - T.]iu. dS - f [uu. - U. ]6T. dS

For composites, 8 refers to the corresponding material, M".
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+ (. Uw (U.~ T}! (3.5)

where

u. = (I - CO)u. + au•) on . (3.6)

We observe that for arbitrary variation of strain, stress, and displace-

ment in V, we obtain Hooke's law, the definition of strain, and the

momentum equations, respectively. On the boundary S, moreover,

arbitrary variation of u. and T gives, respectively, the prescribed

traction and displacement boundary data. The last term in (3. 5) corres-

ponds to -he jump conditions on the discontinuity surface !. It indicates

that, if weighted averaged displacement and tractions defined by Eqs. (3.6)

and (3. 4)1 respectively, are given arbitrary variation, then the continuity

of the traccion and displacement components is guaranteed. Note that,

similarly ,o the one-dimensional case, special forms of these weighted

averaged quantities can be obtained by the suitable choice for the arbitrary

function c.

Before proceeding to apply the variational statement (3, 3) to

harmonic waves in composites, let us state another general variational

theorem in which only the stress and displacement are given arbitrary

variation. To this end consider the functional

LDpu Da dV + B.C. + J.C.
(3.:7)

where B. C. and ,J. C. denote, respectively, the boundary and the jump
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conditions as given by the last two terms (with minus sigis changed to plus)

in the right-hand side of (3.3), and Djktm is the elastic compliance

matrix obtained by inverting the matrix C . The first variation ofjk~m

L is

6L = jr•{[DjkmUtmm - u(j,k)I 6ajk+ [jk, k + Pfj•]6u} dV
V3

+ B.C. + J.C. , (3.8)

where, again, B. C. and J. C. correspond to the negative of the last

three terms in (3.5).

Application to Composites

For the sake of simplicity in presentation, let us consider a

composite consisting of a densely packed and completely bounded collection

of unit cells in the form of parallelpipeds; our results, however, apply to

composites with different periodic structures, without any additional

difficulties. Consider a representative cell, and let its three edges be

defined by three vectors L , 13 , 2, 3., We shall assume that the cell

with volume V and surface S consists of different material constituents

which are separated from each other by the interior surfaces E,. We

observe that, betcause of the periodic structure, we have g (X + =g(

where g stands for any of the material properties.

We shall consider harmonic waves of fre luency w and wave

vector q. propagating in this composite., Because of the periodic struc-

ture of the medium, the field equations have periodic coefficients, and
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therefore, according to the Floquet theory, they admit solutions of the

form

f x + t f (x) exp iq..L'} (3.9)

where f stands for any of the field quar.tities, In particular, for x on

the surface S, Eq. (3. 9) defines the quasi-periodicity conditions for the

displacement or tVi-- ti actions, depending on which quantity is identified

with f., For the sake of simplicity in presentation let us denote three

faces of the parallelpiped which intersect at a common point, by S' , and

designate a typical point on S' by •. Then it is clear that, to each

point , on S' there corresponds, for a suitable t a point p + -t

on S S' . The quasi- periodicity condition then becomes

uj + U.( exp i qL}

(3. 10)

Tj= -T+(• T expi , on S'

where the minus sign in the right-hand side of the last equation occurs,

since the exterior unit normals on S at A and t + t, are oppositely

oriented

As in the one-dimensional case, we shall employ the first equation

in (3. 10) as constraints on the displacement field.

To arrive at a variational statement in which the displacement,

the strain, and the stress are varied independently, we now identify the

body forces by Ia uj, and from (3.3) obtain
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JV t Cjkm ( I* 1 2 jk (j, k)

~J { [u* +P)-u.*( expf q4~)+C. C. dS

S- J' j U. + c't }d , (3.11

where all the terms are as defined before. Now, taking the first

variation of K, we obtain

6K=i {[CjktmL m - ajk] 6(jk" [cjk u(j, k) ]5 jk

- [jk, k+ PWOu 6u. u + c.c'}dV

+ ,j T~ + 4P) -Aj]6u.* (j + t

+ [Tj(4) + A. exp i 'p 6 j

- [uj(• + I) - u.(4) exp [i'qk -tP)]8A* + c.c. }dS'

+ J {U( . Ti~ (. j + c. c. (3.1

As is seen, the vanishing of the first integral in the right-hand side of

(3. 12) for arbitrary variation of the indicated field quantities, yields all

the field equations. The vanishing of the second integral shows that the

Lagrangian multiplier A. is given by3

A. = T. (+ •) -T.(1) exp ( i q ] t

?,7



Thus the second term in the right-hand side of (3. 11) is twice the potential

of the surface tractions which are constrained to satisfy the quasi-period-

icity condition (3. 10) • Finally, the vanishing of the last integral in the

right-hand side of (3. 12), for arbitrary variation of the weighted averaged

displacement and tractions, as defined on E by Eqs, (3.4) and (3. 6),

guarantees the continuity of the tractions and the displacements on the

discontinuity surface.

Functional (3. 11) can now be specialized in the same manner as

discussed in connection with the one-dimensional case. For instance, if

we wish to vary only the displacement field, we assume that the last four

expressions in (3. 1) are satisfied, and modify accordingly the integrand

of the first integral in the right-hand side of (3. 11).

In a similar manner we can immediately write down the functional

Lý from the functional L, which yields, for harmonic waves in com-

posites with periodic structure, the appropriate variational theorem in

which the displacement and the stress fields are given independent

variation. In this manner we obtain

L 1 = - kJ f"Ip u.u. - (k) + c.c. IdV

+ Q.C. + J.C. , (3.13)

where Q. C. and J. C., stand for the quasi-periodic and the jump con-

ditions, respectively, which are the negatives of those occurring in the

expression for K 1 As can be immediately verified, the vanishing of the
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first variation of the L , for arbitrary variation of the appropriate

quantities, gives all the field equations, the quasi-periodicity conditions,

and the jump conditions.

Application to Fiber-Reinforced Composites

* As our final illustrative example, we consider harmonic waves

propagating normal to the fibers in a fiber- reinforced elastic composite

whose fibers are approximately rectangular in cross section, and are

placed parallel to each other in a periodic manner. The cross section of

a representative cell is shown in Fig. 3. We consider waves propagating

in the x 1 -direction.

The general variational theorenms, Eqs. (3. 4) and (3. 7), may be

applied directly here. As an illustration we shall apply (3. 7) which

permits variations in the stress and displacement fields. The other case

can be handled in a similar manner.

With the geometry defined in Fig. 3 we therefore write

a /2 a /2

L =o + PW 2 u; - a I
"3 -a /2 -a /Z"DP'Yon'Y 67P ) (P3,y)- ,l - u(P, Id dx 2

1 2 + a /j 2a* - ai • .]

+ <,, x,2) .X-1

a a 2 Ua 2)] + C.
+ / I ( x , ) u x , - u' x -x

12
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a/ a a* iqa

+ r 2 T a a
a a

+ aa a ,qax

12 X 22

b /2 b b ( (b b 2

211

+ c.c.} dx1

b /2
3b b b b{+ -2 u • )(*: -

-b12 122 X)2 2) '1
2

+ C. dx , (3.14)
. 2

y, v, 6, 7 = 1, 2

where DýY81n is the elastic compliance matrix for the plane strain case,

which for isotropic materials becomes D = 4[6 -- [6 6 - X 66,

where 6 P3 is the two-dimensional Kronecker delta.

The second integral in functional (3. 14) corresponds to the

periodicity conditions

a a

up( x .) u ( xI, -- I) P = 1 2 (3.15)

whereas the third integral pertains to the quasi-peridocity conditions

a a
X )= (L , 0)((3 6
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in these integrals the Lagrangian multipliers A 3 are identified with the

corresponding 'ri:tions. The last two integrals, moreover, correspond tc

jump conditions, if different test functions are iv'd in each region for the

displacement and stress fields. As we have pointed out before, the

inclusicn of these jumps, although it may improve on the detailed local

variation of the field quantities, results in a more complicrted numerical

procedure. For this reason it may be desirable to use continuous test

functions for the displacement and the stress components, in which case the

last two integrals drop out. Simple test-functions of this kind are

•N

u (xix2) exp {i Q .l~ +Zrrmgj

n, m= 0

(3.17)

a(x x 2 ) S P expti (Q + Zrn)ý + z1Tmmi]
n, m=O

where

x x1 2
Q-qa , ý1 = , t -

1 a 2 a

1 2

Observe that test-functions (3. 17) satisfy the continuity conditions, the

periodicity and thte quasi-periodicity requirements defined, respectively,

by (3. 15) and (3. 16). These functions, however, do not permit for the dis-
bI.. 1

continuity of the stress-components a on the interfaces at x = t-- and
b 22 1 2

ar on the interfaces at x = . Since no exact solution exists for this
11 2 2

problem, it is not possible to easily assess the accuracy of the results. For

this reason we postpone further discussions until an assessment of their

accuracy is made by means of a iiuu-c refined procedure.
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F•e"a ee TABLE I

Frequency Parameter V) for Indicated Vaiues

"3 b I p
of Q = q&, N, and and for a- -2 ,and - = 3.

FIRST MODE
-a /71 4 - 2...50

N = 1 EXACT N = 1 EXACT

0.5 0.3987 0.3987 0. 1379 0. 1379

1.0 0.7893 0.7892 0.2710 0.2709

2. 0 1. 4925 1. 4930 0. 4969 0. 4974

3.0 1. 8744 1. 8865 0. 6039 0. 6094

SECOND MODE
4 1n2 1 o

N 2 EXACT N =2 EXACT

0.0 5.786 5. 795 1.954 1.958

1.0 5. 194 5.205 1.902 1.907

2.0 4.506 4.516 1.791 1.797

3.0 4.122 4.125 1.722 1.725

FIFTH MODE
S2 1/ 2 17 /3. 5 0

Q N = 5 EXACT N = 5 EXACT

0.0 12.51 12.53 6.45 6.49

1.0 12.98 13.00 6.54 6. 58

2.0 13.66 13.68 6.76 6.78

3.0 14.05 14.10 7.00 7.03
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TABLE Ha

Frequency Parameter v = aw (P/?7)1/2 as given by Eq. (2. 29), by Kohn,

Krumhansl, and Lee [6), and by Sun, Achenbach, and Herrmann (1),

for Indicated Values of Q = qa and N, and for -- - 3, and
77 a 2'Pi

- 100.

FIRST MODE

Present Method Kohn, Krumhansl, Sun, Achenbach
Q EXACT Eq. (2. 29) and Lee, Ref. [6) and Herrmann

_N=I N = 1 N=5 Ref. 1

0.5 0.098 0.098 0. 237 0. 107 0.099

1.0 0.193 0.193 0.460 0. 210 0.196

2.0 0.354 0.354 0.854 0.383 0.381

3.0 0.434 0.430 1.083 0.467 0.546

4.0 0.388 0.380 1.034 0.421 0.687

5.0 0.2244 0.238 0.694 0. 267 0.805

6.0 0.056 0.055 0. 168 0.062 0.901
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TABLE H1b

Frequency Parameter V = aw (p/n) for Higher Modes, as

given by Eq. (2. 29), and by Kohn, Krumhansl, and Lee [6),

b 1
for Indicated Values of Q = q a and N, and for - = I

a 2'

S= 

3, and --- = 100.
p1

SECOND MODE, N = 2 THIRD MODE, N = 3
Present Kohn, Kzrum- Present Kohn, Krum-

EXACT Method hans1, and EXACT Method hansI, and
ES.(2.29) Lee, Ref. [61 _ Eq.(2.29) Lee, Ref. [6)

1.0 1.36 1.36 3.79 2.50 2.50 5.47

3.0 1.24 1.24 3.35 2.57 2.56 6.08

5.0 1.34 1.35 3.41 2.51 2.49 6.22

FOURTH MODE, N = 4 FIFTH MODE, N = 5
Present Kohn, Krum- Present Kohn, Krum-

S EXACT Method hansl, and EXACT Method hansl, and

Eq.g(2.29) Lee, Ref. (6) Eq._(2.29) Lee,Ref. [61

1.0 3.77 3.76 6,76 4.94 4.94 6.69

3.0 3.70 3.69 6.37 5.02 5.00 7.02

5.0 3.76 3.75 6.28 4.96 4.91 7.13
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TAB LE II c

Frequency Parameter V = aw (p/,)1/2 for First Five Modes

givenbyEq. (2.29), andby[6] for N=2, a,- -- =a1 2 ' p,

and - = 50.

Present Method Kohn, Krumhansl, and
EXACT Eq. (2. 29) Lee. Ref. [61

0.27 0.27 0.31

1.91 1.90 3.95

1.0 3.48 3.46 6.27

5.26 5.87 12.11I 6.58 7.12 13.90

0.50 0.50 0.57

1.80 1.79 3.68

2.0 3.56 3.58 6.63

5.16 5.47 11.13

6.78 7.73 14.48
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TABLE mI

Frequency Parameter LI, = aw (P/1)1/2 for Indicated Values of

b 1 pa
Q = qa, a, s/11 , and for - = ,- = 3, and N = 5.

2 1 a Pi

FIRST MODE

E T/171 = 4 2 /77 1 = 50

EXACT 0.789 1.493 1. 886 0. 271 0.497 0.609

1.0 2.0 3,0 1.0 2.0 3.0

-10.0 0.877 1.586 1.919 0.274 0. 503 0.618

- 5.0 0.879 1. 590 1. 923 0.274 0. 504 0.619

0.0 0.929 1.650 1. 983 0.29Z 0. 530 0. 639

0.5 0.936 1.719 Z. 101 0. 279 0. 532 0.677

1.0 1.811 3.622 5.4?ý 0. 561 1.121l i. 68Z

2. 0.868 1.568 1.895 Q ?73 0.499 0.610

10.0 0. 873 1. 579 1.911 0. Z,4 0. 502 0.615
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N=2 EQ. (2.32)

NZ

""H • 0.3

u/=0.271 (EXACT)_

II
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a

Figure 2

Frequency paramter v *- A) as function of the

~~ Ia-o L a 2 -. 50

and Q -1.0.

40



X2

00

. 2

, ,-02 L,-
FtI I1 2 ....

SMI "M2 0
IX

II 20
'p, P2 b

02

Frmte 3

41


